NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA

THESIS

LAUNCH DETECTION SATELLITE SYSTEM
ENGINEERING ERROR ANALYSIS

by
Martin Ronald Beaulieu

March 1996

Thesis Advisor: K. T. Alfriend
Co-Advisor: Thomas Jerardi

Approved for public release; distribution is unlimited.

19960806 013




* DISCLADMERNOTIC

THIS DOCUMENT IS BEST
'QUALITY AVAILABLE. THE
COPY FURNISHED TO DTIC
" CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO
NOT REPRODUCE LEGIBLY.



REPORT DOCUMENTATION PAGE Fom Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources,

gathering and maintaining the data needed, and completing and reviewing the collection of information. Send garding this burden estimate or any other aspect of this
llection of infe ion, including suggestions for reducing this burden, to Washington Headq Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budpet, Paperwork Reduction Project (0704-0188) Washington DC 20503.
1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
March 1996 Master’s Thesis
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

LAUNCH DETECTION SATELLITE SYSTEM ENGINEERING ERROR ANALYSIS

6. AUTHOR(S)
Beaulieu, Martin Ronald
7.  PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
Naval Postgraduate School REPORT NUMBER
Monterey CA 93943-5000
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited.

13. ABSTRACT (maximum 200 words)

An orbiting detector of infrared (IR) energy may be used to detect the rocket plumes generated by ballistic missiles
during the powered segment of their trajectory. By measuring angular directions of the detections over several
obscrvations, the trajectory properties, launch location, and impact area may be estimated using a nonlinear least-squares
iteration procedure. Observations from two or more sensors may be combined to form stereoscopic lines-of-sight (LOS),
increasing the accuracy of the estimation algorithm. The focus of this research has been to develop a computer-model of
an estimation algorithm, and determine what parameter, or combination of parameters will significantly affect on the
error of the tactical parameter estimation. This mode! is coded in MATLAB, and generates observation data, and
produces an estimate for time, position, and heading at launch, at burnout, and calculates an impact time and position.
The effects of time errors, LOS measurement errors, and satellite position errors upon the estimation accuracy were then
determined using analytical and Monte Carlo simulation techniques.

14. SUBJECT TERMS DSP, Defense Support Program, TALON SHIELD / ALERT, Tactical Ballistic | 15. NUMBER OF PAGES
Missile Defense, satellite, error analysis, simulation 125
16. PRICE CODE
17. SECURITY CLASSIFI- 18. SECURITY CLASSIFI- 19. SECURITY CLASSIFI 20. LIMITATION OF
CATION OF REPORT CATION OF THIS PAGE CATION OF ABSTRACT ABSTRACT
Unclassified Unclassified Unclassified UL
NSN 7540-01-280-5500 Standard Form 298 (Rev.2-89)

Prescribed by ANSI Std. 239-18 298-102



i




Approved for public release; distribution is unlimited.

LAUNCH DETECTION SATELLITE SYSTEM
ENGINEERING ERROR ANALYSIS

Martin R. Beaulieu
Lieutenant, United States Navy
B.S., United States Naval Academy, 1988

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN ASTRONAUTICAL ENGINEERING
from the

NAVAL POSTGRADUATE SCHOOL
March 1996

Martin R. Beaulieu

Approved by: % é / (%ﬂwﬁ

K T Alfnen{ Thesis Advisor

W@WJ/‘

Tho as Jerardi, Co-Advisor

Do ¥ Gl

Daniel J. Collﬁ/s, Chairman
Department of Aeronautics and Astronautics

iii



iv




ABSTRACT

An orbiting detector of infrared (IR) energy may be used to detect the rocket
plumes generated by ballistic missiles during the powered segment of their trajectory. By
measuring angular directions of the detections over several observations, the trajectory
properties, launch location, and impact area may be estimated using a nonlinear least-
squares iteration procedure. Observations from two or more sensors may be combined to
form stereoscopic lines-of-sight (LOS), increasing the accuracy of the estimation
algorithm. The focus of this research has been to develop a computer-model of an
estimation algorithm, and determine what parameter, or combination of parameters will
significantly affect on the error of the tactical parameter estimation. This model is coded
in MATLAB, and generates observation data, and produces an estimate for time, position,
and heading at launch, at burnout, and calculates an impact time and position. The effects
of time errors, LOS measurement errors, and satellite position errors upon the estimation

accuracy were then determined using analytical and Monte Carlo simulation techniques.
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LIST OF ABBREVIATIONS, ACRONYMS, AND SYMBOLS

0 (zero) subscript -- launch
A matrix of partial derivatives of focal plane coordinates with respect to
tactical parameters
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2.4 coefficients for range component polynomial of a TBM profile
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DSP Defense Support Program
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orbit eccentric anomaly

e orbit eccentricity

é unit line of sight direction vector in satellite local vertical coordinate frame
[ unit line of sight direction vector in (XYZ) coordinate frame

¢ geodetic latitude

f WGS-84 flattening of the earth

¢’ geocentric latitude

ff subscript -- free-flight

FOV field of view
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focal plane vector table
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altitude component of a TBM profile including loft
polar focal plane coordinate

radiant intensity

intercontinental ballistic missile

subscript -- impact

infrared
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longitude
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earth’s gravitational parameter (398601.2 km®/s%)
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satellite position in (XYZ) coordinate frame
satellite radial coordinate
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equatorial radius of earth (6378.137 km)
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alone -- time of day
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time from launch

tactical ballistic missile

Tactical Ballistic Missile Defense
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Cartesian focal plane coordinate (actual observation )
Cartesian focal plane coordinate (theoretical observation)
Up component of satellite local vertical coordinate frame
satellite local vertical coordinate frame (Up, East, North)
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L. INTRODUCTION

The TRW-built Defense Support Program (DSP) satellites have been the
spaceborne segment of NORAD’s Tactical Warning and Attack Assessment system since
the early 1970’s. Using infrared detectors that sense the heat from missile plumes against
the Earth background, these orbiting sentries detect ballistic missile launches. DSP also
detects nuclear detonations in support of Nuclear Test Ban monitoring. The DSP system
provides near real-time detection information in support of DOD’s tactical warning and
attack assessment mission and is supported by a network of fixed and mobile ground
stations that process and disseminate information to military commanders worldwide. The
Cold War mission of the DSP system was to detect massive intercontinental ballistic
missile (ICBM) attacks. United States’ response to such an attack only required timely
and unambiguous warning. Missile flight times were much longer than the time required
to launch a retaliatory attack. Precise radar tracks could be established with enough time
to mitigate effects as much as technology allowed.

The current combat environment demands much more from launch detection
satellites. The present threat is from tactical ballistic missiles (TBM’s), which exhibit
much cooler burn and shorter thrust times, and possibly more depressed trajectories than
those exhibited by ICBM’s. TBM’s can be launched from almost anywhere within a large
geographical area of interest, with lofted or depressed trajectories. There may be no other
sensors to quantify impact parameters in time to employ anti-ballistic missile (ABM)
weapons or alert potential victims within the impact zone.

For budgetary reasons, the United States is forced to use existing launch detection
satellites to counter the TBM threat into the beginning of the next century. [Ref. 1] More
rapid extraction of more precise information from these existing, technology-limited
satellites must be accomplished in the interim of acquiring the next-generation TBM
detection satellite system. Anti-ballistic missile (ABM) systems, such as Patriot or Aegis,
may be employed as ABM umbrellas in a tactical area of interest, provided they receive

precise and timely cueing from these detection systems.




This raises the question: “How accurate is the information provided by DSP?” To
begin to answer this question, an engineering error analysis must be performed to
determine:

e What are the errors present in the detection system?

e Which errors have the greatest effect upon the accuracy of DSP output
information?

e What are the effects of the errors on the results (individually and collectively)?
By modeling the algorithm used by the tactical warning system to determine trajectory
elements and predict impact zone location of a detected TBM, it is then possible to
introduce the inherent errors separately into the model, and then study their effects upon

the results. The relative magnitudes of their effects upon the output and their effects upon

the results are then determined. This is done both qualitatively and numerically

(statistically), and the results are compared.




II. BACKGROUND

The DSP system consists of one or more satellites in geosynchronous orbit and
one or more ground receiving stations. A DSP satellite consists of a bus (spacecraft)
segment and a payload (sensor) segment. The satellite is 10 meters long, 7 meters in

diameter, and weighs over 2300 kilograms. [Ref. 2]
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Figure 1. Diagram of DSP Satellite [From Ref. 2]

The spacecraft segment receives and transmits all commands and data, provides
attitude, spin-rate, and station-keeping functions, and provides and distributes satellite
power. Solar cells mounted on the spacecraft’s cylindrical body and on four solar panels
mounted opposite the sensor generate the electrical power. The sensor collects IR energy,

provides onboard (initial) data processing, and supplies precise orientation data.



The satellite is placed in a circular, equatorial, geosynchronous orbit (Titan/IUS),
oriented so that the telescope is pointed toward the earth, and spun along its longitudinal
axis at six rpm. This configuration is called a “yaw spinner”. The axis of rotation of the
satellite is normal to the earth’s surface (nadir-pointing). The satellite’s spin allows the
sensor to regularly scan the earth and distributes the thermal load uniformly. The spin also
allows one set of attitude control components to effect two-axis earth pointing control
(roll and pitch) by time-sharing. A counter-rotating momentum wheel keeps the net spin
momentum near zero, thereby minimizing the gyroscopic effect due to coupling between

the spin motion and the orbit rate with minimum fuel expenditure.
The IR telescope is tilted from the spin axis, so that the photo-electric cell (PEC)

array covers the radius of the earth. As the satellite rotates, the entire surface of the earth

within the FOV is scanned by the IR detector, shown in Figures 2 and 3.
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Figure 2. Photoelectric Cell Array [From Ref. 2]
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Figure 3. Focal Plane Array Scanning FOV [From Ref 3]



Detection of IR sources is accomplished with the telescope and PEC-array
portions of the sensor. The signal electronics onboard the satellite partially discriminate
the targets from the background and the ground station completes the task. Location of
the IR sources is derived from orientation of the IR telescope line-of-sight relative to the
earth’s surface. Star sensors augment the sensor data for precise determination of sensor
pointing direction.

The PEC-array of the IR detector is mounted with the nadir end at the center of
rotation of the telescope (see Figure 3). This array contains over 6000 detector cells that
are sensitive to energy in the infrared wavelengths. As the PEC array scans the FOV, a
cell passing across an IR source will generate a voltage with an amplitude proportional to
the signal intensity. This voltage signal is termed an IR return, and is transmitted to
ground processing stations after amplification and background filtering. A simplified
diagram of the data distribution network is shown in Figure 4.
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Figure 4. Data Distribution Diagram [Ref. 4]

DSP has ground stations globally positioned to receive, process, and report
mission data to users. The Satellite Control Facility tracks the satellite, transmits

commands, receives mission and satellite status data, and forwards the data to the Data




Reduction Center (DRC) for further processing. The DRC processes the data, extracts
significant returns associated with missite launches and nuclear detonations, and generates

event messages for transmission to the users over the Ground Communications Network.

[Ref. 2]







HI1. THE ALGORITHM

{Thomas Jerardi has graciously given his permission to adapt and modify his
unpublished paper, “TALON SHIELD/ALERT State Vector Estimation”, which is the
basis for the majority of this chapter.}[Ref. 5]

The detection of a TBM launch is the starting point for any ballistic missile de-
fense. DSP does this by detecting the IR radiation emitted by the exhaust plume of a
launching missile. With detections by two or more spacecraft (stereo observations), trian-
gulation of lines of sight can be used to more accurately estimate the boost-phase trajec-
tory, which is then used to calculate launch position, state vector (position and velocity) at
missile engine burnout, and impact position. Real-time knowledge of the launch position
allows targeting of the launcher. Cueing for ABM weapons systems, such as Patriot or
Aegis, requires timely and accurate trajectory information, which can be propagated from
knowledge of the state vector at burnout. Impact time and position data is extrapolated
from the state vector at burnout, and may be used for warning personnel within the target
area. Therefore, the quality (accuracy) of the trajectory estimation process is of para-
mount importance to Tactical Ballistic Missile Defense (TBMD). Understanding the
algorithms and equations employed in the estimation process is necessary to assess the
quality of the estimated parameters.

The tactical parameter estimation process is composed of several tasks: initial
estimate of the tactical parameters, nonlinear least-squares estimation (refinement) of
tactical parameters, bun-out time estimation, state vector generation, and impact point
calculation. The tactical parameters are:

¢ Ty = Time of launch

oL =Loft

e ¢ = Launch point geodetic latitude

¢ A, = Launch point geodetic longitude

® hy = Launch point height above WGS-84 ellipsoid
e oy = Flight trajectory azimuth (true heading)

These quantities will be explained in more detail in the following sections.



Observational data are used to calculate initial estimates of tactical parameters and

to choose the appropriate TBM profile from a database. The profile trajectory is then
used to calculate expected observations, which are then compared to the actual observa-
tions. The differences are used to calculate changes to the initial estimates, and a least-
squares iteration is run until the differences between expected and actual observations are
sufficiently small. The result is an accurate determination of the TBM’s launch and trajec-
tory parameters. An estimate of burnout time is then made, and the calculated trajectory
is extrapolated to generate the state vector at burnout. This allows the computation of
impact time and position using simple ballistic trajectory equations. Each of these tasks is

described in detail in the following sections.
A. OBSERVATIONAL DATA

The starting point is the observational data, which are measurements of IR radiant
intensities (IR returns) as a function of time from each of the approximately 6000 focal
plane elements in the DSP satellite’s sensor. Attitude information (star sensor measure-
ments, jet-firing data, momentum wheel tachometer data) is also included in the telemetry
stream and used to determine spacecraft attitude history. The satellite’s position is de-
termined by the Air Force Satellite Control Network (AFSCN). A global perspective of

the observation geometry is shown in Figure 5.

Figure 5. Observation Geometry [From Ref. 5]
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The discrimination of TBM IR returns from earth background is a complex proc-

ess. It will be assumed to have been effectively done, and that a table of observations

corresponding to a single, boosting TBM is available. An example is shown in Table 1.

Index | Time | S/C |Intens.| Azimuth | Elevation | G.H.A. | Dec. | Radius
(sec) | ID (rad) (rad) (rad) | (rad) (km)

k T S/IC I B n gha & R

1 12936 | 1 140 | 4061854 | 0.115847 | 0.174532 0 42164.17
2 13030 2 23.0 | 2.427020 | 0.094741 | 1.221730 0 42164.17
3 13544 | 3 32.0 | 2.062181 | 0.142310 | 1.832595 0 42164.17
4 13936 | 1 29.0 | 4.062497 | 0.115971 | 0.174532 0 42164.17
5 14030 2 29.0 | 2.427264 | 0.094753 | 1.221730 0 42164.17
6 14544 | 3 40.0 | 2.061969 | 0.142405 | 1.832595 0 42164.17
7 14936 | 1 49.0 | 4.063552 | 0.116147 | 0.174532 0 42164.17
8 15030 2 60.0 | 2.427660 | 0.094746 | 1.221730 0 42164.17
9 15544 3 65.0 | 2.061752 | 0.142493 | 1.832595 0 42164.17

Table 1. Example Observational Data

The index, k, runs from 1 to n, the total number of observations (typically less than
20), and is used as a subscript for the remaining symbols to denote a particular observa-
tion. Time, Ty, is the time of observation measured from midnight of the day of the obser-
vation, and runs between O and 86400 seconds. Spacecraft Identification, S/C ID, is
simply a notation used to identify which satellite is making which observation. The in-
tensity, L, is the radiant intensity of the IR return, and is used to select the type of TBM
being detected. Azimuth angle, By, is the azimuth of the line of sight of the IR return
measured clockwise from true south, and has a range of 0 to 2x radians (0° to 360°).
Elevation angle, n, is the elevation of the return measured from nadir, and has values
between 0 and 0.175 radians (0° to 10°). Satellite position is given in spherical coordi-
nates. Greenwich hour angle, gha,, is the angle between the satellite’s nadir point and the
prime meridian, measured positive east. Declination angle, &y, is the angle above or below
the equator, measured positive north. (Greenwich hour angle and declination have been
adopted instead of sub-satellite point longitude and latitude to avoid confusion with TBM
latitude and longitude.) Radius, Ry, is the distance from the satellite to the earth’s center,
measured in kilometers. Geosynchronous satellites typically stay within a few degrees of

the equator, and have a radius of approximately 42,164.17 km.
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B. TBM PROFILE

A TBM profile is a description of the nominal powered flight trajectory of the
given TBM. An example TBM profile is given in Table 2.

Time | Intensity | Altitude | Range | Time | Intensity | Altitude | Range
(sec) (km) (km) | (sec) (km) (km)
0 36.0 0.000 0.000 32 60.6 7.023 3.195
1 36.3 0.006 0.000 33 62.4 7.469 3.491
2 36.6 0.026 0.000 34 64.2 7.928 3.803
3 36.9 0.058 0.000 35 66.0 8.402 4.132
4 37.2 0.103 0.000 36 68.4 8.890 4.479
5 375 0.163 0.001 37 70.8 9.393 4.844
6 37.8 0.235 0.004 38 73.2 9.911 5.229
7 38.1 0.322 0.010 39 75.6 10.444 5.633
8 38.4 0.423 0.020 40 78.0 10.992 6.057
9 38.7 0.537 0.036 41 81.2 11.556 6.502
10 39.0 0.666 0.058 42 84.4 12.136 6.969
11 39.5 0.809 0.087 43 87.6 12.732 7.459
12 40.0 0.965 0.124 44 90.8 13.345 7.973
13 40.5 1.136 0.171 45 94.0 13.975 8.511
14 41.0 1.321 0.226 46 96.0 14.622 9.075
15 41.5 1.520 0.292 47 98.0 15.288 9.665
16 42.0 1.733 0.367 48 100.0 15972 10.282
17 42.5 1.962 0.453 49 102.0 16.675 10.928
18 43.0 2.204 0.550 50 104.0 17.397 11.604
19 43.5 2.460 0.658 51 104.6 18.140 12.309
20 44.0 2.731 0.777 52 105.2 18.904 13.045
21 45.0 3.015 0.908 53 105.8 19.690 13.813
22 46.0 3.312 1.050 54 106.4 20.499 | 14.613
23 47.0 3.623 1.205 55 107.0 21.332 15.446
24 48.0 3.948 1.372 56 106.4 22.190 | 16.314
25 49.0 4.286 1.551 57 105.8 23.075 1.217
26 50.6 4.637 1.744 58 105.2 23.986 18.155
27 52.2 5.001 1.950 59 104.6 24.925 19.131
28 53.8 5.378 2.170 60 104.0 25.894 20.145
29 55.4 5.769 2.404 61 98.0 26.894 21.199
30 57.0 6.174 2.652 62 80.0 27.925 22.293
31 58.8 6.591 2916 | 625 20.0 28.450 | 22.850

Table 2. Sample TBM Profile [Ref. 5]
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A profile consists of IR intensity as a function of time, nominal (maximum range
trajectory) vertical and horizontal ranges from the launch point as functions of time, and
maximum bumn time, tma (62.5 seconds in the example). The detected radiant intensity
over time is compared to TBM profiles in a data base, and the best match is selected as the
type of TBM being observed. This selection process, called “typing”, is complex, and is
also assumed to have been done correctly. A more computationally efficient (but equiva-
lent) representation of the nominal downrange distance and altitude profiles can be found
by fitting quartic polynomials to the data in the profile tables. Use of the polynomial repre-
sentation during .calculations precludes table look-up and interpolation problems for non-
integer times-of-flight. The profile distance polynomial has the form:

d, =a, +a,t+a,t’ +a,t’ +a,t* ¢))
and the profile height polynomial is:

h, =b, +b,t+b,t* +b,t> +b,t* ¥))
where t is time of flight, and a; 4 and b, 4 are coefficients of the fourth-order polynomial.
These coefficients are not computed within this algorithm, but are assumed to be known,
exact, correct, and available from the typing process; i.e., perfect a priori knowledge of
the particular observed TBM’s nominal trajectory. Since real-life TBM’s do not fly the
profile exactly, using the profile to determine the trajectory introduces an error into the
algorithm. The inherent error of inexact profile information is ignored in this analysis.
Assuming the profile to be exact does not invalidate the error analysis, however.

A “loft” parameter, L, is used to account for trajectories above or below the nomi-
nal profile. This very simple model for a ballistic missile trajectory adjusts the profile to
give actual range:

d=(1-15L), 3)
and altitude:

h=(1+Lh, @)
Loft varies over approximately +0.25. Figure 6 is a plot of nominal (L = 0), lofted (L =
+0.25) and depressed (L = -0.25) trajectories.

13




40

1 Lofted
35 -

30 .
d Nominal

25 -

E Depressed
4% 20
2
2
15+
10 -

0 5 10 15 20 25 30 35 40

Range (km)

Figure 6. Trajectory Profiles for Three Loft Values
C. LINE OF SIGHT PROJECTION

The least-squares iteration process begins with an initial estimate of the tactical
parameters. In order to make an estimate for the initial TBM position (Ag, ¢o), the focal
plane measurements must be changed into a LOS between the satellites and the TBM,
which points to the position of the TBM on the globe. The first step is to transform the
satellite positions (gha, 8, R) into earth-centered rotating coordinates (XYZ), in which the
X-axis extends through the prime meridian and the Z axis is aligned with earth’s spin axis,

depicted in Figure 7.
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Earth’s
center Y

Figure 7. Coordinate Frame Ilustration
The satellite position transformation from (gha, 8, R) to (XYZ) is:
Xs, R, cos(8, ) cos(gha, )
Ys, | =| Ry cos(d, )sin(gha, ) 5)
FA R, sin(8,)

where, the subscript, s, denotes satellite position, and the sub-subscript refers to the k™
observation. The focal plane coordinates, Mk and By, are first transformed to the satellite’s
Up-East-North reference frame, (UEN), and then must also be transformed into (XYZ).

The focal plane coordinates, can be visualized with Figure 8.

Figure 8. Focal Plane Coordinates

15




The transformation of polar (0, Bi) coordinates into Cartesian (UEN) coordinates
is:
—cos(n, )
é, = | -sin(B,)sin(n,) ©)
—cos(B, )sin(n, )
This is the unit line-of-sight (LOS) direction vector in (UEN) coordinates. Next transform
into (XYZ) (refer to Figure 7):
cos(gha,) -—sin(gha,) Ojcos(6,) O -sin(8,)
¢, =|sin(gha,) cos(gha,) O 0 1 0 €, @)
0 0 1] sin(d,) 0 cos(3,)
For the initial position estimate, it is sufficient to assume that the line of sight
terminates on the surface of a spherical earth with an effective radius of rer = 6371 km.

The Cartesian coordinates of the TBM are:

XTK

r=|yg [=Ry +p:8, (8)

Zg
where the subscript, 1, denotes TBM position, sub-subscript k refers to the k™ observa-
tion, and p is the length of the LOS vector as shown in Figure 7. The Law of Sines is one
of several methods that may be used to calculate p. The geometry of the problem is

shown in Figure 9.

DSP

Figure 9. Initial Position Estimate Geometry
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The angle opposite p is:
R, [sin
Xy =T—M, —sin” (lkl—(n—"lj ©)
Tetr

With some trigonometric identities and algebra, the expression for p becomes:

T sin{n +sin"‘(———|l?\"|sm(nk )H
eff k

_ T sin(x, ) - T (10)
sin(n, ) sin(n, )
The longitude of this point is:
(= tan"[ﬁ*—) (11)
X,
and the latitude is:
¥4
¢, =tan” {————— J (12)
2 2
Xg, t¥yg

D. INITIAL ESTIMATES

The core of the estimation process is a nonlinear least-squares iterative calculation
of the tactical parameters. This method is based on a one-term (linear) Taylor expansion
of the focal plane observations in terms of the six tactical parameters. This procedure
requires an initial estimate of the tactical parameters. The accuracy of the initial estimate
does not effect the accuracy of the final estimate, but can effect the convergence time of
the least-squares process.

The initial estimate of the launch position and heading is based on the projected
positions (¢x and A;) obtained from the LOS observations. The lines-of-sight from each
satellite usually do not intersect at a single point (even if they were simultaneous observa-
tions), as shown in Figure 10. The initial latitude and longitude guesses are found by
calculating the average position from the first LOS observation from each satellite. The
assumption is made that if one satellite can see the TBM, then all can observe it. This

artificiality is not true in the physical world.
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Figure 10. LOS Projection Scatter
In this example, three satellites observe the TBM, so the first LOS projected lati-

tudes and longitudes (from each satellite) are averaged:

o _ ¢1 +¢2 +¢3

b, 3 (13)
2, = A, +7;z + 45 (14)

The superscript, , denotes the initial estimate. The last LOS projected positions are also

averaged to obtain the approximate final position observed:

4)11—2 + ¢n41 + ¢n

= 15
e 13)
o = e s (16)
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Equations (13) to (16) assume that the first and last three observations are from three
different satellites. If only two satellites observe the launch, only the first and last two
observations would be averaged.

The direction of the last position from the first is the initial estimate for the head-

ing, a®

. T -
ao(m = 5 tan, ][()"Im - }'o(o))cos(‘bo(m ) g — <l’o(O)] (17)
The function tan,” is the two-argument arctangent, used here because its range is +x.

This function is used because a four-quadrant answer is required.

The first estimate for T, is twenty seconds before the first observation:

T, = T,-20 (18)
and the initial guess for L and h, are both zero:

LY =0 (19)

h,* =0 (20)

E. EXPECTED POSITIONS ALONG THE TRAJECTORY

Given the six (estimated) tactical parameters at launch, the expected position of
the TBM along its boost trajectory can be determined by applying the TBM profile to any
observation time, and in particular, Ty, by first computing:

t, =T, -T, @1
Equations (1) through (4) then give the expected altitude (hy) and range (dy) from the

estimated launch point when t = t;:

d, =a, tat, +a,t,” +a,t,’ +a,t,’ 1)
hy, =b, +b,t, +b,t,> +b,t,° +b,t,* @)
d, =(1-15L)d, (3)
h, =(1+L)h, @)
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Next, it is necessary to calculate the “earth-central angle”, a quantity used in (23) and
(24):

9, = — (22)

Oy is simply the angle between the launch point and the position of the TBM with the

earth’s center as the.vertex. 0 can be visualized with Figure 11.
X ’\

d

PN

0\
//// //// — \
Earth .~ :
( i Launch
\ position

Figure 11. Earth-central Angle

Using 6y, spherical trigonometry gives the equations for the geodetic latitude:

o, = g -cos™[cos(8, )sin(¢, ) + sin(®, )cos(d, Jeos(aL, )] (23)
and longitude:
A, = A+ Sin_,[sm(ﬁk)sm(ao)] (24)
cos(¢, )
The altitude is simply the present height of the TBM added to the initial height at launch:
alt, = h, +h, (25)

In addition to the geodetic coordinates, the Cartesian coordinates are also required. Using

r. = 6378.137 km, and f =

, the WGS-84 values for the flattening of the earth,
208257

the geocentric latitude of the TBM is calculated:
¢', = tan"'[(1-f)” tan(¢, )] (26)
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as well as the local radius:
_ r.(1-f)
V(-)? cos’ (¢, ) +sin* (4, )

These values are then transformed into earth-centered, Cartesian coordinates of the TBM:

27)

Tocal,

Xy, = [r,‘mlk cos(¢', ) +alt, cos(d, )]cos(?\.k) (28)
Y5, = [T, 080", ) +alt, cos(é,)]sin(h, ) 29)
Zy, = T, SiN(Q', ) +alt, sin(é, ) (30)

F. NONLINEAR LEAST SQUARES ESTIMATION

Since the (polar) focal plane coordinates of the observations are nonlinear func-
tions of the tactical parameters, a nonlinear least-squares process is required. This is
achieved by a sequence of linear least-squares estimations. Each of these linear least
squares estimations is based on a one-term (linear) Taylor series expansion of the obser-
vations in terms of the tactical parameters. A general requirement of ordinary linear least
squares is that the noise contaminating the observations should be independent and have a
common (preferably Gaussian) distribution.

In this case, the “polar” focal plane observations (Bi, ) are transformed into
“Cartesian-like” coordinates (uy, vi):

u, = -tan(n, )sin(B, ) 31)
v, = -tan(n, Jeos(B, ) (32)
so that the coordinates have similar behavior with respect to errors and noise. Either n or
sin(n) could be used in place of tan(n), but since n<10°, all three behave similarly. The
chosen form corresponds to a gnomonic projection of the globe onto a plane tangent at

the nadir point. Figure 12 illustrates this.
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Figure 12. Focal Plane Transformation

Next, it is necessary to determine what the focal plane coordinates would be for
each observation if the TBM were actually located at the predicted coordinates given in
(28) to (30).

The expected line-of-sight is computed:

Ax, Xy, —Xg,
Ay, | =|yg — Vs, (33)
Az, Zy — 2z

In order to determine the focal plane coordinates of azimuth, B, and elevation, m,
the LOS vector given in (33) must be rotated into the observing satellite’s local vertical
coordinate frame, (UEN):

U, cos(d,) O sin(3,) )/ cos(gha,) sin(gha,) O0)(Ax,

E, |= 010 —sin(gha,) cos(gha,) 0} Ay, (34)

N, -sin(d,) O cos(8,) 0 0 L\ Az,
This is the transpose of the transformation matrices given in (7).

Now 1 and ¥ can be simply expressed in (UEN) terms by noting that:
-E,

E,”+N,’

sin(B, ) = (35)

. -N
i . 36
cos(B,) Ekz +Nk2 (36)
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G, = -2k 37
o, 37
. N,

.= 38
U, 38

Expected focal plane coordinates are denoted with a “ >, Taking the difference between
actual observations and expected observations generates Su and dv (found on the lefi-hand
sides of (41) and (42)):
Su, =u, -0, (39)
ov, =v, -V, (40)
Now that the changes in the focal plane coordinates are known, they can be related to
changes in the tactical parameters. The one-term Taylor expansions of u and v in terms of
the tactical parameters are:
a?]lzE‘BT(,—rg~ll%8L+5?;10&1)0 +%8X0+%5h0+5—iu—;8a0 4n
ov ov ov ov ov ov

&v=—8T, + —8L+—058¢p, + — A, + —8h, + — .
VA, Ol T o, M T, S T g, o g %

Su =

(42)

These equations, written in vector-matrix format, are the linear least-squares

model that forms the basis of the tactical parameter estimation process:

(8T,

ou, v, Ou, e 04 Oy 8L
(ﬁuk): 8T, o o, or, oh, do, | Ot “3)

dv, oV, 0Ov, Ov, p OV Ovy oA,

o, L by BN, b, 00,/ sh,

\daL,/

There are two rows of the center matrix in (43) for each of the k = (1 to n) observations
for a total of 2n rows. This matrix of partials is denoted the “A” matrix, and represents

changes in the focal plane coordinates with respect to changes in tactical parameters.
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The differences in the focal plane coordinates, 6u and &v, are used to generate
adjustments to the tactical parameters by solving (43) for the tactical parameter variations:

(8T,
SL
od, e T[Sukj

-|A 44
A, [ A] A v, “4)
&h,
\SaL,/

The middle term in (44) is the pseudoinverse of A, and is used because A is an (2n x 6)
matrix, and is generally not square. The changes to the tactical parameters, the left-hand
matrix in (44), are added to the initial estimate, and the process is repeated until all the
components of the left-hand vector in (44) are sufficiently small, or the convergence crite-
rion is met. The result is the correct tactical parameters for the observed TBM launch.
The matrix of partial derivatives, A, is the key to the whole iteration process. The
development of this matrix involves multiple use of the Chain Rule for derivatives. The
partials in (41) can be expanded to yield:
ou _Su 0 N Ou OA  Ou h

+— (45)
T, 6¢6T oA 0T, ¢h OT,
D wa o )
JL opoL OAJL ohal
ot dp nh b an
o0b, 0op, OAOH, ohop,
I R )
Oh, OOk, OrOh, Ohah,
M _nH D )
ch, 0 oh, 5%5 oh oh,
n_ b ok b 50)
oo, Oopon, OAoOo, Ohoa,

24




In a similar manner, the partials of (42) are expanded:

ov_ovoh ovor ovoh

oL oL ONAL oh oL

v _voh vor v oh
o, obop, Orop, ¢chop,
o _ovoh ovoh Ovoh
oh, ObON, OAOL, ohoh,
v _ N v ovoh
oh, opoh, Onoh, ohoh,
o _vop vah o

b

(52)

(53)

(54)

(55)

(56)

Patterns and structure in these twelve equations are more easily recognized when

these equations are written in matrix form:

(ou) [6d0 on oh
ot | |aT, o e,
al @ @
JdL . JL 4L
du o0 I oh
o9, _ ob, 0b, Ob,
o |=| % a on
a,| |, on, o
oul| | % o o
oh, | |on, oh, on,
| | @ o o
\aao/ _&lo 5(10 &X‘U
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fov) [od o oh ]
or, | |aT, ot o,

NI | % O oh

oL oL L AL [ ov)
ov o) OL oh a
%, | |2, %, o | o .
ov| | op OA oh N
P, | |, oh, oh, | v
| | &% o o \on
oh, ch, oh, oh,

ov o0 Oh oh
\&lo/ _&xu 50‘.0 &xﬂ_

Note here that (57) and (58) have identical structure. The left-hand sides are the deriva-
tives of the focal plane coordinates with respect to the tactical parameters, the vectors on
the right are the derivatives of the corresponding focal plane coordinates with respect to
TBM position (latitude; longitude, and height), and the center matrix describes the deriva-
tives of the position with respect the the tactical parameters. This effectively separates the
change in the focal plane coordinates with respect to tactical parameters into two parts; a
matrix that describes changes in position due to trajectory, and a vector that describes the
relation between focal plane observations and TBM position.

The matrix is given a name, A;:

00 Oh oh
o1, oT, T,
o6 oA ¢oh
oL oL oL
o0 Or oh
A= 6(%’ o (59)
o, ok, O\,
0p OA oh
oh, oh, oh,
00 Oh oh
_aa’(] a(X'O aa’ﬂ_
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so that (57) and (58) can be rewritten:

( ou

T,

o)

T (@

AL

| =Ml o (60)

ok, kS

|\

ah,

A
\Za,
(év_)
A
LoV

3| (2

FaRE

1A, — (61

‘ N 1y )
X e

| v oh

| oh,

o

\ o,

The elements of A; can be found qualitatively. This is done in Appendix A, and

the results are:

84 cos(a,) od sin(at,) 1
g, Tg T, 1.4 cos(d, —Qh—l

_15dpcos(ar,) 15, sin(a,) Tl
Teer T cos(¢,) F
A = 1 0 0 (62)
0 1 0
0 0 1
_dsin(a,) d cos(at,) 0
reﬂ T COS(¢0)
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The values of the elements in (62) are approximations, but approximate magni-

tudes and correct signs are all that are required for the iteration process to converge. The

benefit of making this simplification for A, is the reduction in computation time. The

complete and exact formulae can be extrapolated from Appendix A.

Similarly, vectors on the right-hand sides of (57) and (58) can be separated into

simpler components:

As before, these equations can be written in matrix form:

Ou_Ouox Oudy uoz
o oxop cyod oz
u_uox oy ouoz
S X Sy &zdir
Ou_Oudx Oudy Ouclz
oh oxoh dydh ozoh
Ov_ovix viy ovoz
o ox0p oydd 0z
& W& Ny Ne
Sh N Oyon Gz O
o _vix viy vz
éh &xch dydch &zoh
(o) Tox & &z ou)
(00| (00 b | ox
Gul_|0x Oy Gzjoul
|l v v an|oy
aul (& Oy oz

\oh) [6h h &b \g
() [ & e
0| |0b o 0| ox
vi_1ox oy ozfov
al lon oan anloy
NI X oz
\oh) |éh oh oh \5z/
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(67)
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The center matrix is renamed Az:

& oy &
A, =|— — — 71
TP o on O 7
x oy &
| ¢h oh oh |
and its elements can be approximated by:
~(r +h)sin(¢) cos(A) —(rg +h)sin(¢) sin(A) (rg+h) cos(d)
A, = —(r¢ +h)cos(d)sin(A) (re,,+h)cos(¢)cos(k) 0 (72)
cos(d)cos(A) cos(¢) sin(}) sin(d)
The vectors on the right-hand side of (69) and (70) can be further broken down:
(@) [ & N|a)
ox ox ox ox | oU
u|_|oU E Njou (73)
dy| |¢&y o oy |cE
LQ“_ u E N @“—
52/ L6z oz oz NON
(&) [eu & Y&
ox ox ox ox|dU
w| | E N o)
oy dy oy oy | CE
v | E N X
oz) Loz oz 02 J\ON
The center matrices in (73) and (74) are identical, and renamed A
(U E AN
T ER
A=|— — — (75)
P loy oy Oy
U E N
|0z 0z ¢Oz
A, th transformation from (XYZ) to (UEN) has been derived previously in (7):
cos(gha,) -sin(gha,) OJcos(d,) 0 -sin(3,)
A, =|sin(gha,) cos(gha,) O 0 1 0 (76)

0 0 1] sin(d,) 0 cos(3;)
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The final step is to determine the elements in the vectors on the right-hand sides of
(73) and (74). These are easily computed from (37) and (38):

au E
—_— 77
U U (77)
ou 1
kol 78
cE U (78)
Ou
—=0 79
N (79)
o N
AL 80
ou  U? (80)
ov
2 81
¢E @D
ov 1
= —— 82
N U (82)
Now (57) and (58) can be rewritten:
( éu
!___._
7T
|
a (&
Fs U
| 1
; Fn =AAA; —G! (83)
&, 0|
I&u ./
| oh,
&
\ 0w,/
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Y

|2 2le2|onle 8|2

=AAA O (84)

f,__
Zlo @

Equation (83) is used to compute the odd rows (k = odd) of A in (43), and (84) is
used to compute the even Tows (k = even) of A in (43).

Focal plane coordinates, (Bx, M), are transformed into Cartesian-like focal plane
coordinates, (ux, vi) . (Circled numbers refer to steps illustrated in Figure 13.) Satellite
positions and initial estimates of tactical parameters are used to generate expected
(theoretical) focal plane coordinates, (0,,V, )@@, and the A matrix @, (which is denoted

v Xu,v)
&T,,L, g, 2o-h0,0)

b in Figure 13) and its pseudoinverse @ . The differences of the

focal plane coordinates, (dux, dvi), (observed minus theoretical) € are used to generate

adjustments to the tactical parameter estimates by computing ‘7

du,
!(STO\i iSv,W
l} oL : Zuz
!
2‘:“ =[ATA]A") (85)
v ! .
8h, ‘
Sao) Sun
Sv,/

If all the elements of the left-hand vector (adjustments to the tactical parameters) are not
sufficiently small, the current values (j-1) of the tactical parameters are updated ® to the

:th

I
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If the iteration process has converged, the iteration process is terminated and the current
values of the tactical parameters are the best estimates that this process can generate. This

entire process may be visualized by a flowchart diagram drawn in Figure 13.

B.n) (gha. 3.R) (Te L. b0 Mor h,,. (111)4——|
| ‘ 8
‘%@ (g ¥s Zg) ) \
v 3 3 |

(V) Y. ____fwy) |

@®.v) (T, L, 9g.Ao,hg,00) |

g

\ / / |

5 |

®u, F\\ (ATAYIA" :
\ / :

(67,51 o¢ B3 Ol B0t _

Figure 13. Flowchart Diagram of Iteration Process

G. BURNOUT TIME ESTIMATION

The estimation of burnout time is based on the TBM profile maximum burn time
(tmax), the last observation time (Tyaq), and the next potential observation time (Taex), had it

occurred. The maximum burn time according to the profile is:

Tou = Ty o (87)
Two cases can occur.
(@) if Tmax = Thext then
1
Tbo = Tlxq - —2-(Tn:x1 - Tlnst) (88)
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(b) if Tmax < Tren then
1
T, = Tha +—2—('1"lmx -T.) (89)
A figure and example are given below as a demonstration:

170

165 o DSPI
E o DSP2
1604 Tpee = 159.36
155 4 4 DSP3 T = 15544 & e
150 ’ B -
[ -
145 £ A _
140 ] -
1 ~
135 4 A e
g ~
130 4 B
125 -
1 e
120 4 T
0 1 2 3 4

Figure 14. Burnout Time Estimation
For the sample data given in Table 1, using the profile given in Table 2, tma = 62.5
seconds, Tig = 155.44, and the next potential observation is Tpe = 159.36. With T =
109.36, the maximum burn time is Tmax = 171.86, so case (a) applies and burnout time is

estimated at Ty, = 157.40.
H. STATE VECTOR GENERATION

The state vector completely defines the TBM’s position and velocity, and has six
elements. With the tactical parameters and burnout time estimates, generating the state
vector at burnout is done by evaluating the position and velocity equations at the burnout
time:

ty = Tho = 1o (90)

0
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Substitute t for t in (1) and (2), and use (3), (4), and (22) through (25) t0 get ¢uo, Aso,
and alty,

de =a, +a,t,, +aztlw2 +a3tb°3+a4t,,°4 (1
By =be+bty, +b,1," +bt,” + bty 2
d,, =(1-1.5L)d,_ 3)
hy, =(1+ L), )
o, = L 2)
Tewr
T i . . =
o, = 5 -cos '[cos(B,,, )sin(d, ) +sin(B,, Jcos(d, Yeos(ct,)] (23)
A, = Ay +sin_,[sm((),w)sm(cxo)} 24)
cos(¢,,)
alt,, = h,+h,, (25)

The burnout velocity is expressed in terms of speed (Vso), flight path angle (¥so),

and heading (0to):
V,, = vd? +h’ (o1)
4B
o=t (2] ©2)
2y, = sin 1| OSSR (93)
be U 00S(6ho) )

where dand b are the time derivatives of d and h:

(94)

(95)
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The state vector at burnout, Ti, 1s:

(96)

Yo
s,

L CALCULATION OF IMPACT POSITION AND TIME

{The equations and methods in this section are adapted directly from Chapter 6
of Bate, et al.} [Ref 6]. The ballistic trajectory is modeled in three phases: powered
flight, which is the portion that DSP observes; free-flight, which is a portion of an elliptical
orbit; and re-entry, which is the portion from where atmospheric drag becomes significant
until missile impact. The powered-flight phase is modeled with the TBM profile polyno-
mials presented earlier. The ellipse traced during free-flight is simulated using inertial
two-body mechanics. Atmospheric drag effects during the re-entry phase are not specifi-
cally calculated in this model, but are somewhat accounted for by assuming that the dis-
tance traveled over the earth from re-entry to impact is the same as from launch to
burnout. This is the same as assuming that the earth-central angles are equal:

0,=0, 97
The speed of the TBM during re-entry is assumed to be unaffected, however. These -
approximations are recognized artificialities, but are simpler than calculating ballistic
coefficients of various TBM’s and modeling atmospheric density, and more accurate than
assuming the missile remains on its elliptical path until impact. Figure 15 illustrates the

geometry and some of the quantities used in the equations.
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re-entry point bumout point

impact point ; , launch point

Figure 15. Ballistic Trajectory [Ref. 6]

The equations contained in Chapter 6 of Ref. 6 concemn ballistic trajectories and
are based upon inertial quantities and a spherical earth model, so the geocentric position
vector and inertial speed at burnout are required. Geocentric latitude is generated from
(26):

¢'y, = tan"'[(1- f)” tan(9,,)] (26)
The earth’s radius at burnout is calculated with (27):
_ r.(1-f)
V(- ) cos” (@', ) +sin’ (¢'s,)

These values are then transformed into earth-centered, Cartesian coordinates of the TBM:

@27

rlot:alm7

Xy = [T, 0OS(8s0 ) + lty, OS(,,)] cOS(R ) (28)
Vi = [rb“l” cos(¢',, ) +alt,, cos(d)m)] sin(A,,) (29)
Zy = Ty, Sin(d'y, ) +alty, sin($,,) (30)
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which define the geocentric TBM position at burnout:

X

oo = | ¥r, (3)
Zy,
In an inertial reference frame, the TBM has an initial eastward velocity at launch
due to the earth’s rotation, v,. This velocity can be expressed as:

Vo = Mo, @ €OS(y, ) (98)
where @, = 15°/hour, the rotation rate of the earth. The burnout velocity can be broken
down into three inertial (UEN) components. In the inertial frame, the initial eastward
velocity is added to the eastward component:

Vy =V, sin(v,,) (99)
V. = V,, cos(y,,)sin(a,, )+ Vv, (100)
V, = V,, cos(y,,)cos(a,, ) (101)

Inertial quantities are denoted with a bar, “ ™. The magnitude of this vector is the iner-

tial speed, V,, :

Vo =y V2= V2 4V, (102)
The inertial flight path angle and heading may now be calculated:
Vo = Sin"(—l,ij (103)
bo
(V)
o, =tan’'| =% 104
bo k VNJ ( )

Now that the inertial quantities are known, a non-dimensional parameter, Q, is defined as
the squared ratio of the inertial speed of the TBM to circular orbit speed at that position:

Q=- (105)

3
where p = 398601.2 -il.n—z, the gravitational parameter for the earth, and ry, = |y, the
sec

magnitude of the TBM position vector.
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The eccentricity of the ballistic “orbit™ is:
e =y1+Q(Q-2)c0s’(7,) (106)
The free-flight “earth central angle”, ¥, is defined by Bate, et al,, as that earth-

central angle that the missile traverses between burnout and re-entry (see Figure 15). This
definition is modified by adding the angle traversed during reentry, 6. to the BMW de-
fined angle, ¥. This implements the assumption that the TBM’s trajectory is modified by
drag. The new definition for the angle, ‘¥, is:

‘~P:2cos"'(]—Qcoes (7"“))+9w » (107)

The eccentric anomaly, E, and the semi-major axis, a, of the ballistic trajectory are:

[eed3)

E = cos’ L (108)

]—ecos(f)
\2

Too (109)

a=—t
2-Q

Assuming the speed of the TBM is unaffected by drag during re-entry, the time of
free flight (burnout to impact) is defined as:

tg =2 E[n—E+esin(E)] (110)
Yu
the time of impact from launch is:
tim = tho + tar (111)
and the time of day of impact is:
Tim = To + tim (112)
Using the Law of Cosines from spherical trigonometry, latitude at impact, ¢'i, 1s:
oL, = sin"'[sin(é}, ) cos(¥) + cos(2m - &, )] (113)
This can be transformed back into the WGS-84 latitude:
b = tan"’(-ztaln—f%"z—)) (114)
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This method is not an exact transformation, but it is a close approximation that does not
affect the error analysis. A better model should be used if more precise latitude of impact
is desired.

Using the Law of Cosines again, and after some algebra, the longitude traversed,
AN\, is:

A= cos-*(“’s(“’) -sin(«t»f.,,)sinw:,o)] oty a15)
cos(9,) cos(d3,)
So, the impact longitude, Aim, is:
Ay = Ay +AM (116)

Better models for the ballistic trajectory could possibly be employed. The goal of
this analysis is not to precisely determine the actual impact zone, but to determine the
effects of error sources upon the result. Thus, the effects found using this model should

be applicable to other ballistic trajectory models.
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IV. ERROR SOURCES

Noise (error) is present in every aspect of the algorithm presented in Chapter 3.
Every measurement, constant, coefficient, model, equation, approximation, and
assumption impart some finite quantity of uncertainty upon the result. Even if a quantity is
exact to its limit of accuracy, the simple fact that it is represented by a finite number of
digits limits the precision of that quantity. For example, if a ruler has one-sixteenth inch
gradations, the accuracy of any measurements made with the ruler is tone-thirty-second of
an inch. This means that there are no “perfect” values in the algorithm, and each value
used is a source of uncertainty, termed an error source.

Each error source usually has one or more underlying causes. A complete error
analysis would break each error source down to its fundamental level, and model each
level correctly. An analogy for this is the layers in an onion: The onion can be viewed
externally as a whole, but can also be peeled, layer by layer, to reveal deeper, underlying
matter that support the external skin. In this section, some of the underlying causes of the
overall error sources are identified, but in these analyses, only the overall error magnitudes
will be modeled and analyzed.

The obvious origin of any errors present is the observational data since it is the
starting point for the algorithm. These data are physical measurements of three types:
time, focal plane measurements, and satellite position and orientation.

Time errors can be caused simply by having more than one clock being referenced
as a source of time measurement. Imperfect synchronization between clocks’ time and
time passage rate are obvious €rror SOurces. Time delays caused by radio transmission of
data due to distance, atmospheric refraction, and relative motion Doppler effects may add
another time error. In the extreme, the source of time error can be traced all the way back
to our measurement of time passage with respect to the celestial sphere, which is not
fixed. The magnitude of time errors is relatively small, and getting smaller as time

measurement improvements are being made continually.
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The largest source of time error enters the algorithm at the burnout time estimation
phase. The 10-second sampling rate limits the accuracy of the estimate to + 5 seconds for
single satellite observations. The accuracy of the profile’s value for tn.x also comes into
play in the estimate. The burnout time is crucial to determining the ballistic trajectory,
since the TBM is undergoing its greatest acceleration changes during the final seconds of
powered flight. Small errors in the estimate of burnout time thus result in larger errors in
the estimate of impact time and position.

LOS measurement errors can arise from many noise sources, mainly of two types:
attitude uncertainties and IR radiation measurement errors. The attitude of the spacecraft
needs to be precisely known (and it simplifies the process if it is very stable). A 28
microradian error in pitch or roll pointing accuracy of a geosynchronous satellite equates
to a 1 kilometer error on the surface of the earth, at least 35786 kilometers away. Any
attitude control system inaccuracy effects are amplified by the geosynchronous altitude.
Vibrational noise from spinning momentum wheels, uncertain knowledge of the mass
properties of the yaw-spinning satellite, star catalog and star sensor measurement errors,
thruster misalignments and disturbance torques, tachometer errors, and mechanical
misalignments all contribute to the total attitude uncertainty. The knowledge of the
telescope boresight axis alignment with the satellite’s reference frame is defined by the
design and manufacturing of the DSP satellite, and changes slightly with thermal
variations.

The IR radiation measurements of intensity and angle of arrival (AOA) also have
several underlying error sources. Locations of the individual photoelectric cells on the
focal plane array are recorded in what is termed the “Focal Plane Vector Table” (FPVT).
The positions of the PEC’s change as the satellite heats and cools with varying sun-
satellite orientations, causing a warping of the focal plane, but the FPVT does not account
for the changes real-time. In addition, detector noise, refraction, and IR attenuation due
to clouds and water vapor all add to the total measurement error.

Satellite position measurements from AFSCN are used to update orbit ephemeris
data. The measurements are, of course, inexact, but those errors are compounded over

time because the updates occur only once weekly. The ephemeris data is propagated to
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determine satellite position during the week between updates. DSP is a geosynchronous
satellite, so its orbit does not change greatly in that period, but errors in the propagation
model can cause the predicted position to be different from reality.

Keeping all of these underlying components in mind, the errors are modeled in the
tactical parameter estimation algorithm. The real-world error component magnitudes, bias
and random distributions may be different from those simulated, but the overall effects
manifest themselves in a manner close to the error models. It should be possible to
extrapolate the results obtained in this study to different errors by properly scaling the
different magnitudes and distributions. It must be emphasized that since the goal of this
study is not to exactly determine the tactical parameters at launch, state vector at burnout,
or impact time and position. The purpose is to determine the contribution of the error
sources upon these values, and this can be done with approximate models for the errors.
If the intended goal is to calibrate the system to eliminate bias errors, then the sources of

the errors must be determined more exactly to determine what is observable (measurable).
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V. NUMERICAL ANALYSIS

The algorithm described in Chapter III was programmed into MATLAB™. Three
error sources (time, satellite position, and LOS) were simulated and added to the
observational data, first separately, and then combined. The effects of the errors upon the
results are analyzed at three points: launch position, burnout position, and impact
position.\ Five Middle Eastern capital cities were chosen as fictitious launch sites to
determine the effects of TBM launch position upon the accuracy of the results.

The model for time error is a random uniform distribution between 0 and 1
milliseconds. For satellite position, a random normal distribution with zero mean and
standard deviation of 200 meters was added to each of the components (R, gha, §). This
is approximately a one standard deviation sphere with radius 346 meters. The LOS error
was modeled as a random normal distribution with a standard deviation of 5 microradians,

added to both B and n components. Histograms of sample error distributions are shown

in the following three figures.
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Figure 16. Histogram of Time Error - Uniform Distribution
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Errors added to the observations had the effect of creating an ellipse of incorrect
data points around the true position, termed an “error ellipse”. The 1-c ellipses shown in
the next figures are determined using statistical methods.[Ref. 7] For the launch ellipse, a

matrix of two columns was collected during the simulation:

i xom ¢°n -1
Ograr-0 ¢ournr=o
Orreet ¢0ml
Ipts = : (117)
L)\'omm ¢0m999_

where Ipts = launch points, the matrix of launch longitudes, Ao, and latitude, ¢o. The first
row is the generated true launch position, the second row is the calculated launch position
with no error added to the observational data, and the remaining 999 rows are the
calculated launch positions with errors added to the observational data. The first two
rows are error-free, and are removed to produce a matrix of only “corrupt” positions. To
determine the ellipse dimensions, a and b (semi-major and semi-minor axes lengths), the
eigenvectors and values of the covariance of this matrix were calculated. Twice the

square root of the eigenvalue diagonal elements produces a and b:

a\ ., Jeigenvalue(1,]) 0
(b)—z \i 0 ,/efigenvalue(z,z)} (118)

and the eigenvector is the direction cosine matrix for rotating the ellipses from the primary

axes. The impact ellipses are calculated similarly, with the initial data matrix being
composed of impact longitudes and latitudes, instead of launch. The ellipses can then be
plotted using the ellipse equation:

2

2
+%2-=1 (119)

w~‘><

and letting x vary between *a, and letting y be the dependent variable. Multiplying the
resultant (x, y) coordinates by the eigenvector matrix rotates them to the correct

orientations. The semi-axes are in units of radians, since the positional values are in
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radians. Thus, the (%, y) plots produced are the longitude and latitude of the points, once
the values are converted to degrees.

For the burnout position, the same method is used, but the data point matrix has
three columns, the third being the altitude of the TBM at burnout. The covariance method
works as well in three dimensions, producing a, b, and c, the three semi-axes for the
ellipsoid formed. The coordinates are calculated in the same manner, using the equation

for an ellipsoid:

XZ y2 ZZ
—a—{' + B—; + ;2'- =1 (120)
and, again, rotating by pre-multiplying by the eigenvector matrix.
The following figures are representative of all the simulated cases, but this
particular case is a 300-km TBM launched from Baghdad heading 0°, with the combined

Crorrors.
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Figure 19. Launch Position Error Ellipse
The ellipse drawn on top of the data points encompasses the data points within one

standard deviation of the mean, assuming the distribution is normal. Since the time error
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has a uniform distributioh, 1-o is not the expected 66% for time error cases. This method
is used anyway for lack of a better one and to maintain a common baseline for
comparison. As it turns out, the time error contribution is very small, and thus does not
effect the combined error case distribution.

The position at burnout is plotted in three dimensions, using altitude as the third

coordinate to form an ellipsoidal error volume.
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Figure 20. Position at Burnout
The three ellipses show the outline of the ellipsoidal volume. It is difficult to
perceive the ellipse orientations, but they are mutually orthogonal, (necessarily, since they

correspond to the eigenvectors of distinct eigenvalues).
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The impact ellipse is similar but larger than the launch position ellipse, due to the

propagation of velocity errors from burnout to impact and the error in the burnout time .
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Figure 21. Impact Position Error Ellipse

The three previous figures illustrate the error ellipses(oids), but showing all the
data obtained in this format is unwieldy. The sizes (areas and volumes) of the positional
errors are the important quantities for identifying which error source has the largest effect.
Thus, the data have been processed to determine these quantities, and are plotted next.

The data for the 300-km TBM was collated by city, heading, and error source.
The ellipse(oid) dimensions calculated must be equated to the actual distance on the
ground to determine the area of the ellipses. To do this, the angles must be in radians, and
are multiplied by r.ca. The distance between lines of longitude shrinks as the latitude
moves away from the equator, so the longitudinal distance must be multiplied by' the

cosine of the geocentric latitude, ¢'. Thus the equation for ellipse area becomes:

area = 7, "ab cos(¢’) (121)
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The ellipsoid volume is not as simple, so a parallelepiped with dimensions, a x b x
c, is used to approximate it:
volume = abc (122)
These areas and volumes are plotted in the following figures, separated by error
source and heading. Each launch point is represented by a different color:
Aden =blue
Baghdad = black
Damascus = green
Riyadh = red

Tehran = cyan
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Figure 22. Time Error Effects Upon Launch Ellipse Area
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Figure 23. Time Error Effects Upon Burnout Ellipsoid Volume

1.4

1.2

Impact Ellipse Area (km*2)
o
[un]

x 107

0 50 100 150 200 250 300 350

Heading (degrees)

Figure 24. Time Error Effects Upon Impact Ellipse Area
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Figure 28. LOS Error Effects Upon Launch Ellipse Area
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Figure 29. LOS Error Effects Upon Burnout Ellipsoid Volume
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Figure 30. LOS Error Effects Upon Impact Ellipse Area
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Figure 33. Combined Error Effects Upon Impact Error Ellipse
It is immediately apparent from these plots that the launch site has little effect upon
the size of the error ellipses and ellipsoids. It is also obvious that the size is dependent
upon TBM heading and observation geometry. The relative magnitudes of the error
effects are not as obvious, so a plot of four error ellipses is shown in the next figure, with

each ellipse formed by a different error source.
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Figure 34. Launch Error Ellipses for Each Error Source
From this plot it is easily recognized that the errors can be ranked in order of
effect:

1. focal plane errors
2. satellite position errors
3. time
All the error sources together produce the largest ellipse, as would be expected from the

superposition principle.
This is further illustrated by Table 3. Each error source is a row: “time” is the
time error runs, “satpos” is the satellite position error runs, “LOS” is line of sight, and

“combin.” is the combined errors runs.

LAUNCH ELLIPSE AREA BURNOUT ELLIPSOID IMPACT ELLIPSE AREA
ERROR (km?) VOLUME (km®) (km®)

min mean max min mean max min mean max
time 3.26e-8 | 2.59¢-7 | 1.22e-6 | 2.9e-11 | 3.6e-10 | 1.33¢-9 | 1.57¢-6 | 2.6le-5 | 1.41e-4

satpos 3.77e-3 | 5.27e-3 | 8.68e-3 | 6.04e-4 | 1.14e-3 | 2.32e-3 | 6.12e-3 | 7.92e-2 | 3.27e-1

LOS 2.97¢-2 | 8.45¢-2 | 1.83e-1 | 2.37¢-2 | 9.33e-2 | 2.09e-1 | 3.05¢0 | 1.02el | 1.95el

combin. || 3.91e-2 | 1.0le-1 | 2.97e-1 | 4.44e¢-2 | 1.25¢-1 | 4.50e-1 | 3.35¢0 1.38¢l 4.06el

Table 3. Error Ellipse Areas and Ellipsoid Volumes
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This is also shown graphically in the following plots:

Ellipsoid Volume
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Figure 35. Launch Ellipse Area Comparison
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Figure 37. Impact Ellipse Area Comparison
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The sum of the error sources’ positional error sizes is less than the combined error
source’s positional error size. This implies a nonlinear interaction of error effects with
each other. This is a reasonable result considering the complexity of the simulated system,
and noting that most real systems exhibit nonlinear behavior.

Taking advantage of the ease of modifying MATLAB™ code, various changes to
the present DSP system model were put into simulation to determine the effects upon the
accuracy of the results. For every case, Baghdad is the launch site and the observational

data were modified by combined error Sources.

The first case is the control case with nominal system parameters. It is listed as
“Bagcom” to represent “Baghdad combined errors”, and is used as a baseline case for
comparison. The second case, “Synchr.” shows the effects of synchronizing the spins of
the satellites so that the satellites scan a single area of interest within one second of each
other. For the third case, “Molniya”, the satellite at 70° GHA was elevated to 63.4° decli-
nation, to simulate a Molniya + geostationary viewing geometry. The remaining cases
were simulating faster scan rates from 10 seconds down to 2.5 seconds. The numerical

results are shown in Table 4.

LAUNCH ELLIPSE AREA BURNOUT ELLIPSOID IMPACT ELLIPSE AREA

ERROR (km?) VOLUME (km®) (km?)
min mean max min max max min mean max

Bagcom § 4.21e-2 10le-1 | 2.74e-1 | 4.46e-2 | 1.09¢-1 | 2.60e-1 | 3.83e0 | 1.40el 4.04¢l

Synchr. | 4.40e-2 | 7.07¢-2 | 1.10e-1 2.09¢-2 | 4.89¢-2 | 8.61e-2 | 3.94¢0 | 7.82¢0 | 1.52¢0

Molniya | 4.39¢-2 | 7.58¢-2 | 1.25¢-1 | 2.6le-2 557e-2 | 1.04e-1 | 2.91e0 | 7.96¢0 | 1.85el

10 s s¢ 42102 | 1.0le-1 | 2.74e-1 | 4.46e-2 | 1.09-1 | 2.60¢-1 | 3.83¢0 | 1.40el 4.04¢c1

75ssc | 2.62¢2 | 7.44e-2 | 1.95¢-1 | 2.53e-2 | 4.55¢-2 | 1.09-1 { 4.03¢0 8.72¢0 | 2.08el

Sssc 248e2 | 5.02¢-2 | 1.52e-1 | 1.23e-2 | 2.52e-2 | 6.52¢-2 | 2.52¢0 | 5.84e0 1.64¢1

25ssc | 1.18e-2 | 2.36e-2 | 3.48e-2 | 5.05¢-3 | 9.21e-3 | 13le-2 1.03¢0 | 2.95¢0 | 4.58¢0

Table 4. Various Case Comparison

The effects of the modifications are more easily observed graphically:
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Figure 38. Comparison of Mean Launch Ellipse Areas
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Figure 39. Comparison of Mean Burnout Ellipsoid Volumes
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Figure 40. Comparison of Mean Impact Ellipse Areas

Both modifications have the effect of decreasing the areas and volume by about a
third. This is the expected result for the Molniya case, since the viewing geometry is more
three-dimensional with two satellites on the equator and the middle satellite near Molniyan

apogee.

The synchronized spin results were a surprise, however. The effect upon the
launch ellipse area is fine, but since the burnout time estimation should have been less
accurate, the burnout ellipsoid volume and impact ellipse area were expected to remain
unchanged at best. Obtaining simultaneous observations would have obvious advantages,
since they could be processed differently and be used to determine the position exactly for
discrete instants in time during the boost trajectory. However, these observations were
not processed differently, and were not simultaneous -- only close together (within one
second of each other). Still, the result may be a manifestation of some mathematical

process that causes the increase in accuracy.

The following plots show the effects of increasing the scan rate, or alternately,
decreasing the time between observations. This allows more observations to be made

during the boost phase.
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Figure 42. Scan Rate Effects on Burnout Ellipsoid Volume
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Figure 43. Scan Rate Effects on Impact Ellipse Area
The effects seem to be linear decreases upon the launch and impact ellipse areas,
and quadratic decreases on the burnout ellipsoids. This result is in perfect agreement with
intuitive predictions.
In summary, the numerical results are generally in accordance with expected re-
sults. As a qualitative check of the quantitative results, the next chapter is devoted to a

qualitative analysis of a simplified case for comparison.
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V1. QUALITATIVE ANALYSIS

Starting with the equations presented in Chapter 3, a qualitative analysis has been
done to determine the expected trends in the numerical analysis. The problem is simplified
by assuming that the equations are exact and that there is only one satellite. The effects of
time errors are not Ganalyzed, so the problem is to determine how satellite position and
focal plane error effects should effect the results.

TBM geocentric longitude and latitude can be expressed in (XYZ) coordinates:

x:ml({] (1)

¢r =tan 1(\[____2-2—:_,—7} (]2)
x4y

These (XYZ) coordinates can be expressed in terms of satellite position and focal plane

coordinates using the LOS projection equation (8):

r=|y;|=R,+pe (8)
Z,

Rewriting the terms on the left-hand side in terms of R, gha, 8, n, and  generates a rather
lengthy equation, and is given in Appendix B. The next task is to find the partial
derivatives of the TBM position with respect to the five error terms, using the Chain Rule.

Taking the partial with respect to R, for example:
o _ox Ay
R oxOR 0Oy R 0z dR

o _ob o iy %o 124
R xR oy R 0z AR

(123)

Again, expression this equation written explicitly in terms of the error sources becomes
tedious, and can be found in Appendix B. The results, however, are interesting and are
shown as plots. The horizontal axis pointing left is m, the horizontal axis pointing right is

B, and the vertical axis is the differential.
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The partial derivatives with respect to gha turn out to be simple:

%: (125)
.%'zzo (126)

The observations one can make from analyzing these plots is that most of the
partial derivative plots are flat and close to zero. When napproaches 8.6°, however, some
of the values begin to get large. This happens when the observed IR event is close to the
limb of the earth as viewed from a geosynchronous satellite. There also appear to be
transitions when 1 approaches 8.6° and b is 0° or 180°.

Figures 44 and 45 show that satellite radius error effects are of such small
magnitude that they are neglible. Figures 46 and 47 show that satellite declination error
effects are more important to determine latitude than longitude, except when n
approaches 8.6°. Figures 48 and 49 show that B LOS errors affect latitude determination
more than longitude, except, again, when n approaches 8.6°. Figures 50 and 51 show that
1 LOS errors have the largest effect of all, and the partials exhibit the same behavior near
the limb.

These plots of formulae give an indication of what magnitude the error ellipse

should have, given the magnitude of the error is known, by using that magnitude in

equations similar to (127):

Mz%mz(@ﬁ+@ﬁ+ﬂﬁjﬂ (127)

where R can be any of the five error quantites (R, 8, gha, n, or B).
To test this assumption, substitute the magnitude of the errors used in the

simulation, and compare the result with the numerical analysis. The errors are:

AR =200 m (128)
Mzm_,( 0.200 km j (129)
42164.17 km
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0.200 km
Agha=ta '[—————) 130
gha . 42164.17 km (130)
An = 5 pradians (131)
AB = 5 pradians (132)

The generalized equations for the partial derivatives of the geocentric longitude
and latitude can be used to find the derivatives for a specific location by using specific
focal plane coordinates. For Baghdad, viewed from the satellite at 70° gha, in particular,

these coordinates would be:

n = 01216 radians (133)
B = 3.8546 radians (134)
Using these values, the partial derivatives with respect to the five error sources
become:
A _ s (135)
B rad
X _ o753 (136)
p rad
Oh _ 137587 (137)
on ra
X _ 59674 (138)
on rad
O _ o656 (139)
%) rad
od’ rad
—— = -0.658 — 140
0 rad (140)
Oh rad
— =-3663x10" — 141
R X - (141)
op’ _ 1ad
—=1583x10" — 142
R X - (142)
oA rad
=1— 143
Ogha  rad (143)




P 0= (144)

Multiplying (135) through (144) by the appropriate error quantities produces the

geocentric longitude and latitude error values.

Ad, =3166x107° rad (145)
Ad, =0rad (146)
Ad, =-3121x107° rad (147)
Ad, =298 x107° rad (148)
Ad; =-3.765x 107 rad (149)
A\, =-7326x10 rad (150)
Ay, =4743x107° rad (151)
A\, =-3112x107 rad (152)
A\, =-6894x107° rad (153)
AA, =-2865x10 rad (154)

Grouping these in terms of satellite position and focal plane and summing the absolute

values:

A st posion e = AR + A, +Ad; = 6287 x107° rad (155)
AN tie position oo = DAy + Ak, + AL = 1518 x 10™° rad (156)
AQent piaoc emer = A, + Ad = 3357 x107° rad (157)
A st piame omer = AN, + AL = 7181 x107° rad (158)

These values are in radians, which can be equated to kilometers on the surface of

the earth by multiplying latitude by the earth’s radius and longitude by the earth’s radius

and the cosine of the latitude. For this analysis, earth’s radius is assumed to be 6378.137

kilometers:

Ad;

satellite position exror

= (6287 x 107 rad) 6378137 km = 4010 x 107 km (159)

AN e position emee = (1518 X107 rad) c0s(33.333°)6378.137 km = 8.089 x 102 km (160)
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A e omee = (3357 x 107 1ad) 6378137 km = 2141x 10 km (161)
AN g ime e = (7181 x 107 1ad) c05(33333°)6378137km = 3827 x 10" km  (162)

Assuming that these values are equivalent to the semi-axes of an error ellipse, multiplying
longitude error by latitude error and by 7 gives the area of the error ellipses:

ellipse area .y, posiion sror = 1.019 X 107 km? (163)
ellipse area ;... i omor = 2.574 x 10" km” (164)

The focal plane error effects are 25 times greater than the effects of the satellite position
error. The relative magnitudes agree with the numerical results, but the specific values
obtained here are greater than those obtained numerically by a factor of about three. The

numerically obtained values were:

launch ellipse mean area ., i, soison omer = 527 X 107 km’ (165)
launch ellipse mean area ., o orer = 845 X 107 km* (166)

This difference is expected, since this analysis does not account for stereo viewing, the
least squares iteration process, or time effects.

This result shows that it is possible to compute error ellipse areas using a
simplified qualitative analysis. The relative order of the magnitude of the effects is in
agreement with predictions, and verifies the results obtained numerically. To do the same
analysis for burnout volumes and impact areas would require the addition of time errors,
and trajectory equations. This increases the difficulty of this “back of the envelope”

analysis, and is not treated here.
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VII. CONCLUSION

The TALON SHIELD / ALERT state vector estimation algorithm was correctly
modeled in MATLAB™. System errors were modeled and introduced into the algorithm
to determine the effects upon the accuracy of the final results. A simplified qualitative
analysis verified the quantitative results.

The three questions posed in the first chapter are now answered:

1. The errors in the system are broadly categorized as errors in time, satellite
position, and LOS.

2. The relative magnitudes of the error effects listed largest to least:
A. LOS - using a zero-mean, 5 pradian standard deviation normal error
distribution in focal plane coordinates
B. satellite position - using a zero-mean, 200 meter standard deviation normal
error distribution in satellite positon coordinates
C. time - using a uniform error distribution between zero and 1 millisecond.

3. The effects seem to behave independently, since the principle of superposition
works. The effects of the combined errors are slightly greater than the sum of
the individual effects.

Additional runs were made to determine the effects of various geometries, spin rates, and
observation synchronization.

There are many tasks left to accomplish in this area of research. The MATLAB
code can be optimized, additional parameters and system changes can be simulated, and
more detailed analysis of the results can be made. The error sources can be modeled more
exactly by analytically “peeling the error onion”, or by using actual DSP values and
measurements. The results obtained could be further analyzed, possibly to

Simulating the DSP system with computer code has proven to be an effective tool
for error analysis, which is a necessary first step for determining how best to improve the
present TBM detection system or modify the design of a follow-on system.
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APPENDIX A. “A” MATRIX DERIVATION

The A matrix is made up of partial derivatives of focal plane coordinates with
respect to the tactical parameters. These elements can be determined qualitatively. Exact
equations are not required for the iteration process to converge, SO small-angle
assumptions are made to simplify the resulting equations. The benefit of using these
approximations for the matrix elements is the ease of computation and thus a reduction of
computing time.

The A matrix is divided into three components, A;, Az, and As. The elements of
A, and A, will be derived in order, using MATHCAD 5.0 Plus. The A3 matrix is derived
in Chapter 3. The elements of the first column of A; are partials of latitude, ¢:

n , '
¢=i - acos| cos()-sin ¢ ¢ + sin(8)-cos ¢ ¢ -c0s(® o]

Taking the partial derivatives:

do  Si(®)sind o - cos(8)cosig gcos,&g

—

|
\,'1 ikcos(9)~sin;\¢ 0 sin(G)-cos\(b 0;~cosia 0/‘; _)2
Using the small angle assumption that sin(6)=0 and cos(0)=1:

dé _cos:\.Q 0 C0S|aQ;

/

O — =COS |
de ;f_ ' A\ J
' sm\¢ 0/;
el
T eft
do_ 1
dd l’eﬂ

d=(1-15L)dp

: 2 ' 3 ; 4
dP=a0+al-‘KT- TO} +82‘\T— TO) +a3~l\T— TO) +a4-KT— TO}
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dd
—=(1 —lSL)[ ay —2-a2-*\T-TO;—3'a3-"\T—T0;2—4~a4-KT—T0, }

dT
dd

dd_ ol a T-Tg+an T-To oy T-To +agiT-T 4
m orap(T-Toj+ay(T-To/ razT-To +a4i% 0]

do _d¢ db dd °°S\ao/ ad

dTy d0dd dTg e dTg

-1.5.d P-cos’\a 0/

d¢ _dé do dd _

dL df dd dL o
a4,

dé
&

% o
dh g

=0

dé
——=-0-sin; Qg
d(lo

The second column is composed of partials of longitude, A
-sin(@)-sin, a0,
A=) g+ asin - —— - |
. cos(d) ,!

sin @ 0} sin O (),

91:‘#.?:.:"}7:/" COS(e) e =R
o ! 2 cos(¢) cos(¢)
! , Sin g
oo
cos( ¢ )
sin. 20} dd sin: & 0) dd

d)v _dh do _dd
dTO de dd dTO ﬁcos(q) dTO reffcos\d) 0) dTO

Assuming ¢ is approximately ¢o:
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d;» dn do dd -1.5d P‘sin{\a 0)‘_-1.5-(1 P‘sinf\a 0)

dL d6 dd dL 1 ggrcos(0) reﬁcoské 0/1

sin; 20 ‘
da = ! -si{0)- ) -sin( ¢ ) jfbi—-sm(e) sm @) n(q)2_=
dé o 2 cos( o )2 dé o cos(0 )2
Sln\(l )
1- m(e) ———
cos($)”
dx a1 ;
d |
|
dr =0 |
dh ;
\
S S Sl [
da g If sm o, ’ cos(d ) cos-'\¢ O)
1. sm(e) R
% cos(¢)

And the third column elements are the partials of height, h:

h'—'ho"‘ (] 4 L)hp
ho=bo b1 T T 1bo T TglibaT To +bgiT To'
p=Po byl Loy P2 0, 03 o) o4l To
dh
Er_-(]+L) b] 2b2'T—T0,—3b3lT—T0]2—4b4|‘T‘TO;‘”‘
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L,
d(l 0

dn
dh

The A, matrix is the partials of (XYZ) with respect to (¢, A, h):
Xy = [r,‘m,t cos(¢', ) +alt, cos(d, )]cos()»k)
Y5, = [Faa, COS($', ) +alt, cos(d,)]sin(2.,)
Zy, = Mg, Sin(9', ) +4dlt, sin($,)

Approximating s With req , alt with h, ¢’ with ¢, and taking the partials:

% = —(r4 + h)sin(¢)cos(r)
DX (5,p +h)cos()sin(A)
Ch

% = cos(¢) cos(Ar)

&
% = —(r4 ~ h)sin(¢) sin(R)

(o

— = (1,4 + h)cos(¢)cos(Ar)
CAh

Y = cos(¢)sin(A)
ch

% = (r.y +h)cos(d)
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The geocentric longitude and latitude can be expressed in terms of (XYZ)

coordinates:
l-alan{!\]
\x/
LI A
dx i 2}
[xz '\1+% J
2/
a1
dy ' 24 ]
x kl+y—2)|
Lo\ /.l
"‘alan‘! z \|
\wx2+y2/'
dé'_ z ) X
dx 3 2 ]
v 5 (—2) [{]4’ z ]
\)z+y / { X4y /IJ
o', -z y
& .7 |
\X +y 2 IL \x2+ ‘2 i
', !
—_— [ 1
Wy h
LWy

The differentials of the geocentric longitude and latitude can be determined using
the Chain Rule. Using longitude and satellite radius as example quantities:
di _dr dx dA dy

@R dx @R dy dR
Substituting the following quantities into the previous equations:
R =42164.17km
gha =70deg
§:=0
'=6378.13%km

Tlocal

n = varies 0° to 8.5°
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B = varies 0" to 360°

This gives expressions for the variations of the geocentric longitude and latitude
due to errors in LOS projections from a DSP satellite with a Greenwich hour angle of 70°.
These expressions are transformed into plots for examination.

The following plots show the differentials of geocentric longitude and latitude with
respect to the five error sources. The horizontal axis pointing to the left is n, the
horizontal axis pointing toward the right is B, and the vertical axis is the differential
evaluated at each (1, B) coordinate.
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dbdR, = dydx, -dxdR, v didy, -dydR, .+ diidz, dzdR,
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; dydgha, ;i

djdgha, i = didx, J;dxdghai it dedy; j

R
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= didx,
i, ij

dxdghai’j + d},dyhJ dydghai’J
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APPENDIX C. MATLAB CODE

The following is the MATLAB™ program used to simulate the TALON SHIELD
/ ALERT state vector estimation algorithm. It is commented in blue font.

% . Martin Beaulieu
% DSP Estimation Algorithm

% Initialize variables

clear; % clear memory

format long; % use 15-digit numerical format
numpoints=1000; % number of data points to run

reff=6371, %5 spherical earth radius (km)

f=1/298.257, %5 WGS-84 flattening factor for oblate earth
re=6378.137, %4 oblate earth equatorial radius (km)
a0=0.0749291380897402; %5 coeflicients in range profile equation
al=-0.0501647424642791,

a2=0.0041947951949387,

a3=-0.0000141392516462238,

a4=8.51293969732759E-07,

b0=0.884282320240989, °, coefficients in height profile equation
b1=-0.129163814041924,

b2=0.0137288843548327,

b3=-0.000159307288768991,

b4=1.36938557528199E-06,

tmax=62.5, %, TBN maximum motor burn time (seconds)
mu=398601.2, %5 earth gravitational constant (km”3/sec”2)
d2r=p1/180; %o degrees to radians

r2d=180/pi; %5 radians to degrees

we=15*d21/3600, %% earth rotation rate (15 degrees/hour)
PPN RS et et

% This section generates the observation table (time. az. el, gha, dec, and radius). The first
% step is to choose the tactical parameters. then calculate how that missile profile would
% appear to an orbiting sensor.

% Initial tactical parameters:

for 11=0:11 %% loop through 12 headings around compass rose
T0=100; %% launch time of day in seconds
L=0; % loft parameter

%Ilat0=12.783*d2r;lon0=45.050*d2r, %o Aden, Yemen
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1at0=33.333*d2r;lon0=44.433*d2r, % Baghdad, Iraq
%Ilat0=33.500*d2r;lon0=36.319*d2r, % Damascus, Syria
%lat0=24.633*d2r;lon0=46.717*d2r, % Riyadh. Saudi Arabia
%Ilat0=35.666*d2r;lon0=51.433*d2r, % Tehran. Iran

h0=0, % launch altitude

hdg0=ii*pi/6; % launch heading in 30 degree steps
data=[TO L lon0 lat0 hO hdg0 zeros(1,9)], %o true tactical parameters

%, Generate observation time matrix:

obs1=T0+30+5*randn(1); 9% first observation time - clouds, vapor, etc.

dt1=10*rand(1);dt2=10*rand(1), %, two random time intervals, 0<dt<10 sec

ttime=[obs1;0bs1+dt1;0bs1+dt2]; % first 3 observation times

ttime=sort(ttime); % put times in chronological order

nextobs=obs1+10; % next sequential observation

=1, % counting index

while nextobs <= tmax+T0, % it next observation is during motor burn
ttime=[ttime;ttime(j)+10}, o, add next observation to time matrix
=it %5 increment counter
nextobs=ttime(j)+10, °, next sequential observation

end %, loop until matrix is completed
=length(ttime); °, number of observations

0.0 Generate satellite poasition matrix

gha=[10*d2r;70*d2r;,105*d2r]; 2, Greenwich hour angle
satord=ceil(6*rand(1)); o randomh select the order in
if satord == 1 o, which satellites observe TBM

tgha=[gha(1);gha(2);gha(3)];
elseif satord =2

tgha=[gha(1);gha(3),gha(2)};

elseif satord = 3

tgha=[gha(2),gha(1);gha(3)};

elseif satord = 4

tgha=[gha(2);gha(3);gha(1)};

elseif satord =5

tgha=[gha(3);gha(1),gha(2)];

elseif satord = 6

tgha=[gha(3);gha(2);gha(1)];

end

tdec=[0,0,0]; % declination
tradius=[42164.17;42164.17,42164.17], % geosynchronous radius

fori=4:n %, make satpos matrix the same size as time

tgha=[tgha;tgha(i-3)];
tdec=[tdec;tdec(i-3)];
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tradius=[tradius;tradius(i-3,:)];
end
satpos=[tradius.*cos(tdec).*cos(tgha)
tradius. *cos(tdec). *sin(tgha)
tradius. *sin(tdec)]; % satellite position

% Apply profile to observation times:

t=ttime-TO, _ % time of flight
dp=aO+al*t+a2*t"2+a3*t"3+a4*t.™4;, % nominal profile distance
d=(1-1.5*L)*dp, % loft-modified distance
hp=b0+b1*t+b2*t.A2+b3*1.A3+b4*t."4; % nominal profile height
h=(1+L)*hp; % loft-modified height

% Generate target position:

theta=d/reff, % earth-central angle
lati=pi/2-acos(cos(theta)*sin(lat0)+sin(theta)*cos(lat0)*cos(hdg0)),%s latitude
long=lon0-+asin(sin(theta)*sin(hdg0)./cos(lati)), % longitude
alt=h0+h; ’ %% altitude
gcl=atan((1-f)"2*tan(lati)), % geocentric latitude
rloc=re*(1-f)./sqrt((1-f)"2*cos(gcl)."2+sin(gcl)."2), % local radius

tgtpos=[(rloc.*cos(gcl)+alt. *cos(lati)). *cos(long)
(rloc.*cos(gcl)+alt. *cos(lati)). *sin(long)
rloc. *sin(gcl)+alt. *sin(lati)]; ~ %% target position

%5 Generate line-of-sight vector and transform into focal plane coordinates

delta=tgtpos-satpos, % line-of-sight vector
13=[];r3t=[;UEN=[], , % reset variables
fori=1:n "

rot1=[cos(tgha(i)) -sin(tgha(i)) 0;sin(tgha(i)) cos(tgha(i)) 0;0 0 1];

rot2=[cos(tdec(i)) O -sin(tdec(i));0 1 0;sin(tdec(i)) O cos(tdec(i))];

rot3=rot1*rot2;

r3t=[r3t;rot3'];

r3=[r3;rot3];,

UEN(,: )=(r3t(3*i-2:3%i,:)*delta(i,)))’; % Up-East-North coordinates
end
tbeta=rem(-pi/2-atan2(UEN(:,3),UEN(;,2))+(2*pi),(2*pi));%o true azimuth
teta=atan(sqrt(UEN(:,2)."2+UEN(;,3).”2)./(-UEN(;,1))); % true elevation

Qm==memccem—ceamane R T ———

%o Using generated data (ttime, theta, teta. tgha, tdec, tradius),
°o compute tactical parameters using least-squares iteration method:
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for index=1:numpoints;
index=round(index),

o, Initialize variables:

%, ensure index is an integer

clear time radius gha dec beta eta TOL 1at0 lonO hO altO hdgO tp;

sse=1;dsse=1;sse1=1 failindex=0;r3t=[};r3=[};

errtime=zeros(n, 1),
errrad=zeros(n,1);
errgha=zeros(n,1);
errdec=zeros(n,1),
errbeta=zeros(n, 1),
erreta=zeros(n,1),

o, reset variables

% time error

9, satellite radius error
%, satellite gha error
%, satellite dec error
% azimuth error

% elevation error

%, Change time, beta. eta, and satpos by some error. epsilon

if index > 1
errtime=1e-3*(rand(n,1)-0.5),
errrad=0.2*randn(3,1);
errgha=atan(0.2/42164. 17)*randn(3,1),
errdec=atan(0.2/42164.17)*randn(3,1 ),
for i=4':n

errrad=[errrad;errrad(i-3)J;
errgha=[errgha;errgha(i-3)};
errdec=[errdec;errdec(i-3)];
end
errbeta=5e-6*randn(n, 1),
erreta=5e-6*randn(n, 1),

end

time=ttime+errtime,

radius=tradius+errrad,

gha=tgha+errgha;

dec=tdec+errdec;,

beta=tbeta+errbeta,

eta=teta+erreta,

% Compute target position:

satpos=[radius.*cos(dec).*cos(gha)
radius. *cos(dec). *sin(gha)
radius.*sin(dec)];
fori=l:n

0., <==.0.001 second

0., variance of +-200 meters
0, variance of ~-200 meters
0, variance of —-200 meters
o, fix satellite positions
%o during single run

0, variance= ~-Smicroradians
0, variance= --3microradians

6 time = truth — error
0., radius = truth + error
%, gha = truth + error
0 dec = truth ~ error
% beta = truth ~ error
%, eta = truth — error

% satellite position
0.5 rotation matrices

rot1={cos(gha(i)) -sin(gha(i)) O;sin(gha(i)) cos(gha(i)) 0,0 0 1];
rot2=[cos(dec(1)) 0 -sin(dec(i));0 1 0;sin(dec(i)) 0 cos(dec(i))];




rot3=rot1*rot2,
r3t=[r3t;rot3'];
r3=[r3;rot3],
uen=[-cos(eta(i)),

-sin(beta(i))*sin(eta(i)),

-cos(beta(i))*sin(eta(i))]; % Up-East -North coordinates
ehat=rot3*uen; % line of sight direction
chi=pi-asin((norm(satpos(i,:))*sin(eta)/reff)); % computation of length
rho=refY/sin(eta)*sin(eta+chi), % for los vector
los=rho*ehat, % line-of-sight vector
tgtpos=los+satpos(i,:)'; %o target position
lat(i)=atan(tgtpos(3)/sqrt(tgtpos(1)"2+tgtpos(2)*2)), %o latitude
lon(i)=atan2(tgtpos(2),tgtpos(1)); % longitude

end

%o Intial estimate of tactical parameters-

latO=(lat(1)+lat(2)+lat(3))/3; %o first obs latitude
lon0=(lon(1)+lon(2)+on(3))/3; % first obs longitude
latbo=(lat(n-2)+lat(n-1)+lat(n))/3, %5 latitude at last obs
lonbo=(lon(n-2)+lon(n-1)+lon(n))/3; % longitude at last obs
hdg0=rem(pi/2-atan2(latbo-lat0,(lonbo-lon0)*cos(lat0))+(2*pi),(2*pi)); %olnch heading
TO=time(1)-20, %o launch time

L=0, %o loft parameter

h0=0; %o faunch height above WGS-84 ellipsoid
tp=[TO0;L;lat0;lon0;h0;hdg0]; %o tactical parameters matrix

% Iterate on initial estimates until the difference between the sum of the

% squares of the errors between two consecutive runs is <=10*eps:

while dsse > 10*eps %0 loop until dsse < 10*eps
duv=[];A=[]; %o reset variables
TO=tp(1);L=tp(2);lat0=tp(3), % update tp matrix values
lon0=tp(4);h0=tp(5);hdg0=rem(tp(6),2*pi); %o with dtp's added
t=time-TO; % time-of-flight
dp=a0+al*t+a2*t."2+a3*t."3+ad4*t. "4, %0 nominal profile distance
d=(1-1.5*L)*dp; % loft-modified distance
hp=b0+b1*t+b2*t."2+b3*t "3+bd*t. "4, % nominal profile height
h=(1+L)*hp, %o loft-modified height
theta=d/reff, %o earth-central angle

lati=pi/2-acos(cos(theta)*sin(latO)+sin(theta)* cos(lat0)*cos(hdg0));% geodtic latitude
long=lonO-+asin(sin(theta)*sin(hdg0)./cos(lati)); % longitude

alt=hO+h; % altitude
gel=atan((1-f)"2*tan(lati)); %0 geocentric latitude
rloc=re*(1-f)./sqrt((1-f)"2*cos(gel).~2+sin(gcl).~2);%s local radius
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tgtpos=[(rloc.*cos(gcl)+alt. *cos(lati)). *cos(long)
(rloc.*cos(gcl)+alt. *cos(lati)). *sin(long)

rloc. *sin(gcl)+alt. *sin(lati)]; % target position

delta=tgtpos-satpos; %0 line-of-sight vector
for i=1:n % rotate into UEN coordinates

UEN(,: )=(r3t(3*i-2:3*i,:)*delta(i,)"),
end
uhat=-UEN(;,2)./UEN(, 1), %6 estimated focal
vhat=-UEN(:,3)./UEN(,1), % plane coordinates
u=-tan(eta). *sin(beta), %o actual focal
v=-tan(eta).*cos(beta); %o plane coordinates
du=u-uhat; % difference between
dv=v-vhat; %% estimate and actual

% Compute A matrix:

cl=cos(hdg0)/reff,c2=sin(hdg0)/reff/cos(lat0), ©°. constants in A matrix
c3=sin(hdg0)/reff,c4=cos(hdg0)/reff/cos(lat0),
dddTO=-(1-1.5*L)*(al+2*a2*t+3*a3*t."2+4*a4*t."3), %o -horizontal speed
dhdTO=-(1+L)*(b1+2*b2*t+3*b3*t."2+4*b4*t."3); %o -vertical speed
dudUEN=[UEN(;,2)./JUEN(;,1).”2 -1./UENC(,1) zeros(size(time))];
dvdUEN=[UEN(:,3)./UEN(;,1).”2 zeros(size(time)) -1./UEN(;,1)];
%o change in focal plane coordinates wrt changes in UEN coordinates
fori=1:n %o construct A matrix
duv=[duv;du(i),dv(i)]; %4 error values matrix
Al=[dddTO(i)*c1 dddTO(i)*c2 dhdTO(i),
-1.5*dp(1)*c1 -1.5*dp(i)*c2 hp(i),
100;010;00 1;-d(i)*c3 d(i)*c4 0];
A2=[-(rloc(i)+alt(1))*sin(lati(1)) *cos(long(i))
~(rloc(i)+alt(1))*sin(lati(i) ) *sin(long(i))
(rloc(i)+alt(i))*cos(lati(i));
~(rloc(i)+alt(i))*cos(lati(i))*sin(long(i))
(rloc(i)+alt(i)) *cos(lati(i))*cos(long(i)) O;
cos(lati(i))*cos(long(i)) cos(lati(i))*sin(long(i)) sin(lati(i))];

Atmp=A1*A2*r3(3*i-2:3*1,’); % A3=(delta UEN / delta xyz)=r3

A=[A;(Atmp*dudUEN(,:)")";(Atmp*dvdUEN(,:))']; % total A matrix
end
AT=pinv(A), %o find pseudoinverse of A
dtp=AT*duv; %o find changes to tp
tp=tp+dtp; % add changes to tp
ssel=sum(duv.”2), %% find sum of the squares of the error
dsse=abs(sse-ssel); %o difference between iterations
if ssel < sse ' '

sse=ssel;

end
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failindex=failindex+1, %, increment counter

if failindex>100 % if statement to prevent continuous looping
dsse=0; % in the event that it does not converge
end
end % loop to next tp iteration

% Burnout time estimation

Tlast=time(n); % last observation time
Tnext=2*time(n-2)-time(n-5), % next observation if TBM was still burning
Tmax=T0-+tmax; % max observation time from profile
if index ==1
Tbo=T0+tmax;
elseif Tmax>=Tnext % pick burn out time as half of the time
Tbo=Tlast+0.5*(Tnext-Tlast), % between Tlast and Tnext or Tlast and
else %% Tmax depending on relative
Tbo=Tlast+0.5*(Tmax-Tlast), %o magnitude of Tmax and Tnext
end
tbo=Tbo-TO, %4 burnout time-of-flight (close to tmax)

%, Calculates state vector at burnout

d=(1-1.5*L)*(a0+al*tbo+a2*tbo”2+a3*tbo”"3+a4*tbo"4); %o distance
ddot=(1-1.5*L)*(al+2*a2*tbo+3*a3*tbo"2+4*a4*tbo"3), %0 horizontal speed

h=(1+L)*(b0+b1*tbo+b2*tbo”2+b3*tbo"3+b4*tbo"4), %% height
hdot=(1+L)*(b1+2*b2*tbo+3*b3*tbo"2+4*b4*tbo"3); %o vertical speed
theta=d/reff, %o earth-central angle
latbo=pi/2-acos(cos(theta)*sin(lat0)+sin(theta)*cos(lat0)*cos(hdg0));>egeodtic latitude
lonbo=lon0+asin(sin(theta)*sin(hdg0)/cos(latbo)); %% burnout lpngitude
hbo=h0+h; % burnout altitude
Vbo=sqrt(ddot"2+hdot"2), %6 burnout velocity
fpabo=atan(hdot/ddot), %5 flight path angle

hdgbo=rem(asin(cos(lat0)*sin(hdg0)/cos(latbo))+(2*pi),(2*pi)); %o burnout heading

%o Calculates ballistic trajectory of target to impact

altbo=h0+hbo; % burnout altitude
gelbo=atan(((1-f)"2)*tan(latbo)); %o geocentric latitude
rlocbo=re*(1-f)/sqrt((1-f)"2*cos(gclbo)"2+sin(gclbo)"2), % local radius

tgtposbo=[(rlocbo*cos(gclbo)+altbo*cos(latbo))*cos(lonbo)
(rlocbo*cos(gclbo)+altbo*cos(latbo))*sin(lonbo)
rlocbo*sin(gclbo)+altbo*sin(latbo)]; % TBM position at burnout

rbo=norm(tgtposbo), %o radius at burnout
vo=rlocbo*we*cos(gclbo); %% initial inertial velocity
Vu=Vbo*sin(fpabo), %o up component of velocity

99



Ve=Vbo*cos(fpabo)*sin(hdgbo)+vo;, - % east component of velocity

Vn=Vbo*cos(fpabo)*cos(hdgbo); % north component of velocity
Vin=sqrt(Vu.”"2+Ve.”"2+Vn."2), % inertial speed
fpain=asin(Vu/Vin), % inertial flight path angle
hdgin=rem(pi/2-atan2(-Ve,Vin)+2*pi,2 *pi); % inertial heading
Qin=Vin"2*rbo/mu; % energy parameter
in=sqrt(1+Qin*(Qin-2)*cos(fpain)"2); % eccentricity of orbit

PSI=2*acos((1-Qin*cos(fpain)*2)/ein)+theta; % freeflight eca
=acos((ein-cos(PS1/2))/(1-ein*cos(PSI/2))); % eccentric anomaly

ain=rbo/(2-Qin); % semimajor axis
tff=2*sqrt(ain"3/mu)*(pi-E+ein*sin(E)); % time of free flight
gelim=asin(sin(gclbo)*cos(PSI)y+cos(gclbo)*sin(PSI)*cos(hdgin)); %egeocentric latitude
latim=atan(tan(gclim)/(1-)"2), % geodetic latitude of impact
fllon=acos((cos(PSI)-sin(gclim)*sin(gclbo))/(cos(gelim)*cos(gelbo)))-we*tF,
lonim=lonbo-+fflon, % longitude of impact
tim=2*tbo-+tff, %o total flight time
Tim=TO+tim, % time of day of impact
data=[data;tp(1) tp(2) tp(4) tp(3) tp(5) tp(6) lonbo latbo hbo fpabo hdgbo Vbo Tim
lonim latim]; %o save data in matrix
end % end of numpoint loop

o Plotting routines and data analvsis

tllon=data(2,3)*r2d; %o true launch longitude
tllat=data(2,4)*r2d, % true launch latitude
llon=data(3:index+1,3)*r2d; %o corrupt Jaunch longitude
llat=data(3:index+1,4)*r2d; %o corrupt launch latitude
mllon=mean(data(3:index+1,3))*r2d,; %0 mean of corrupt longitudes
mllat=mean(data(3:index+1,4))*r2d; %o mean of corrupt latitudes
dllon=tllon-mllon; %o diff between mean and true llon
dllat=tllat-mllat; %o diff between mean and true lat
tblon=data(2,7)*r2d, % true burnout longitude
tblat=data(2,8)*r2d, %o true burnout latitude
tbalt=data(2,9), % true burnout altitude
blon=data(3:index+1,7)*r2d; %o corrupt burnout longitude
blat=data(3:index+1,8)*r2d; % corrupt burnout latitude
balt=data(3:index+1,9); %o corrupt burnout altitude
mblon=mean(data(3:index+1,7))*r2d, % mean of corrupt bo longitudes
mblat=mean(data(3:index+1,8))*r2d, % mean of corrupt bo latitudes
mbalt=mean(data(3:index+1,9)); % mean of corrupt bo altitudes
dblon=tblon-mblon; %o diff between mean and true blon
dblat=tblat-mblat; %o diff between mean and true blat
dbalt=tbalt-mbalt; %% diff between mean and true blat
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tilon=data(2,14)*r2d;
tilat=data(2,15)*r2d,
ilon=data(3:index+1,14)*r2d,
ilat=data(3:index+1,15)*r2d,
milon=mean(data(3:index+1,14))*r2d;
milat=mean(data(3:index+1,15))*r2d;
dilon=tilon-milon;

dilat=tilat-milat;

Ipts=[lion-tllon llat-tllat];
lk=cov(lpts),

[Iv,ld]}=eig(lk),
lab=2*sqrt(diag(ld)),
la=lab(1);

Ib=lab(2),
Ith=pi/2-atan(lv(1,1)/1v(2,1));

bpts=[blon-tblon blat-tblat balt-tbalt];
[bv1,bd1]=eig(cov(bpts(:,1),bpts(:,2)));
babc=2*sgrt(diag(bd1));
ba=babc(1);bb=babc(2);bc=babc(3);

ipts=[ilon-tilon ilat-tilat];
ik=cov(ipts),

[iv,id])=eig(ik),
1ab=2*sqrt(diag(id)),
ia=1ab(1);

ib=iab(2);
ith=pi/2-atan(iv(1,1)/iv(2,1));

%o Save data to analyze

% true impact longitude

% true impact latitude

% corrupt impact longitude

% corrupt impact latitude

% mean of corrupt im longitudes
% mean of corrupt im latitudes

% diff between mean and true ilon
% diff between mean and true ilat

% center data about launch truth

% covariance of scatter

% eigen value & vector of covariance
% dimensions of ellipse

% launch ellipse semimajor axis

%o launch ellipse semiminor axis

%o angle to rotate ellipse

%o center data about burnout truth
%o eigen val and vector of covariance
®o dimensions of ellipse

%o burnout ellipse semimajor axis

®0 center data about launch truth

%o covariance of scatter

°o eigen value & vector of covarance
%o dimensions of ellipse

%o impact ellipse semimajor axis

%o iImpact ellipse semiminor axis

%o angle to rotate ellipse

data=[data;la Ib Ith bal bb1 bth] ba2 bb2 bth2 ba3 bb3 bth3 ia ib ith; milon mllat mblon
mblat mbalt milon milat dllon dllat dblon dblat dbalt dilon dilat 0];

if ii==0

save bOt data -ascii -double
elseif ii==1

save b3t data -ascii -double
elseif ii==2

save b6t data -ascii -double
elseif 1i==3

save b9t data -ascii -double
elseif ii==4

save b12t data -ascii -double
elseif ii==$
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save b15t data -ascii -double
elseif 1==6

save b18t data -ascii -double
elseif ii=7

save b21t data -ascii -double
elseif =8

save b24t data -ascii -double
elseif ii=—=9

save bt27 data -ascii -double
elseif ii=10

save bt30 data -ascii -double
elseif ii=11

save bt33 data -ascii -double
end
clear data

end
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